MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

MHI Development of Advanced Reactors

26, Jan, 2024

MITSUBISHI HEAVY INDUSTRIES, LTD.

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

- > MHI's roadmap is set for short, mid and long term to contribute to carbon neutrality.
- For short term, top priority is to recover the public trust on nuclear energy lost by Fukushima incident. MHI supports restart and safety enhancement for existing plants.
- For mid term, MHI is developing an advanced light water reactor "SRZ-1200" (Nextgeneration PWR).
- For long term, MHI develops several advanced reactors such as SMR to meet diverse social needs in the future and continue to work on fusion reactor as "permanent energy source".

(1) Line-up of MHI's advanced reactors

In addition to Advanced LWR "SRZ-1200", MHI promotes development of advanced new reactors (Small LWR, High-Temperature Gas Reactor, Fast Reactor and Micro Reactor) to meet future social needs.

%This figure includes an outcome of R&D program entrusted by METI.

(2) Development of advanced LWR "SRZ-1200"

- MHI is developing advanced LWR "SRZ-1200" with innovative technologies, which achieves world's highest-level safety. Commercialization target in the mid 2030s.
- > New plant construction is essential to sustain industrial infrastructure and workforce.
- Also developing small LWR to meet future social needs, leveraging the technologies obtained through development of SRZ-1200.

"SRZ-1200"

1,200MWe class

Distributed power source

Reduce BoQ by integrating main components into reactor vessel

- Achieves enhanced safety and competitiveness based on proven technologies
- Limit radioactive effect inside of plant site even in accident.

Small LWR (SMR)

300MWe class

Supreme Safety

- Highly resistant to earthquakes, tsunami and acts of terrorism act, etc.
- Confine radioactive materials and limit its effects within the plant site.

Environmentally Friendly

• Zero CO₂ emission, and flexible operation in coexistence with renewable energy.

Large scale and stable supply of energy

• Large and stable power supply unaffected by international situation and weather change.

"SRZ" represents;

- S: Supreme Safety, Sustainability
- R: Resilient light water Reactor
- Z: Ultimate type (Z) contributing to society by Zero carbon emission.

(In Japan, "Z" also has a meaning of "ultimate type")

Main features of MHI SMR

- Integrated reactor with natural circulation cooling, eliminating potential of LOCA
- Passive safety system without additional power source and water
- Built in underground to be resistant airplane crash and natural disasters

Integrated Reactor

- MHI SMR integrates main components of the primary system (steam generator, primary coolant pump, pressurizes, etc.) into the reactor vessel.
- The concept eliminates the risk of loss-of-coolant accidents caused by the ruptures in the primary coolant piping.

Passive safety system

- Two passive cooling systems provide the plant safety in accidental conditions without additional power source and water.
- The passive system with SG removes core heat by secondary coolant natural circulation through designated heat exchanger outside of the containment
- The passive core/containment(CV) cooling system transfers core heat outside containment.

Built in underground

- "Built in underground" concept provides safety measures against external hazards including natural disasters such as earthquakes (high seismic in Japan), tornadoes, as well as terrorism and intentional airplane crash.
- MHI SMR's downsized containment vessel is suitable for this concept.

(4) Development of High Temperature Gas-cooled Reactor (HTGR)

- Decarbonization in not only the energy sector, but in sectors with high CO₂ emission such as the steel industry, chemical and transportation is essential to achieve carbon neutrality by 2050.
- HTGR can provide carbon-free high temperature heat (over 900°C*1) which can be used as a large and stable source for hydrogen production, contributing to decarbonization in the steel industry and other industries.

*1 HTTR achieved the world's highest heat temperature (950°C).

(5) Development of fast reactor

10

- Fast reactor utilizes fast neutron which contributes to effective use of resources and reduction of volume/radiotoxicity of high-level radioactive waste(HLW).
- MHI group, as a prime company of fast reactor development in Japan, is participating in Japanese government program, international program (Japan-France / Japan-US), and takes lead of development of fast reactor with the goal of operation start by 2050 in Japan.
- The fast reactor development WG has resumed in Japan, and a sodium-cooled reactor has been selected as the most promising. Then MHI has been selected as a prime company for demonstration reactor development. The conceptual design effort will start in 2024.

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

*years needed to radioactivity equivalent to natural uranium

(6) Development of micro reactor (1/2)

- Portable reactor for multi-purpose (energy security (storage), energy source for remote island and disaster area etc.).
- Reactor core has a long service life and requires minimum operation and maintenance throughout its life expectancy
- > Solid core by utilizing high heat conduction material (avoidance of leakage incident)

[Main Specifications of Micro-reactor]

Core size	Diameter: 1 m or less Length: 2 m or less
Primary cooling system	Heat transfer by high thermal conductive materials
Output	1MWt~/0.3MWe~
Operating cycle	5 years or more
Design life	25

(6) Development of micro reactor (2/2)

- The thermal output exceeds 1MWt per module and total power demand is satisfied flexibly combining multiple units.
- Based on "all-solid-state core" concept, the reactor uses a highly thermal conductive graphite-based material that remove heat from core without liquid coolant.
- > Transport inside 40ft standard cargo container by conventional transport systems.

Item Value Fuel HALEU Layer structure with Graphite type **Core structure** material (lighter weight) 1MWt --**Thermal Output Electric Output** 0.3MWe -Operation **Automated** /Control Safety System Full passive Inside Standard 40ft freight Size container

Conceptual Specifications of the Microreactor

(7) Development of Fusion Reactor

- From a long-term perspective, MHI promotes the development of fusion energy through the international collaboration.
- MHI will actively support the ITER project^{*1} based on MHI's high-level detailed design and manufacturing technology for the first plasma operation scheduled around 2025.
- In addition, MHI continues to advance the development of a fusion demonstration reactor.
 *1: International megaproject for the world's largest fusion experiment by seven parties (Japan, EU, US, Russia, China, South Korea and India)

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

MOVE THE WORLD FORW>RD

