

Current Status of JAEA's Research and Development on HTGR

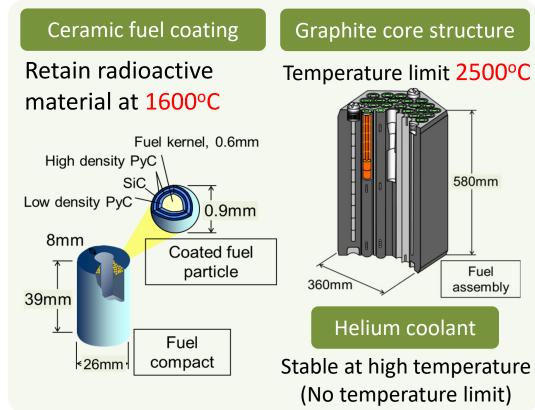
Yukio TACHIBANA

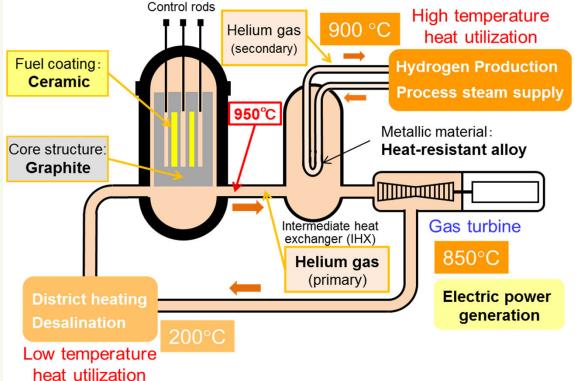
Deputy Director, Reactor Systems Design Department Sector of Fast Reactor and Advanced Reactor R&D

Japan Atomic Energy Agency (JAEA)

Contents

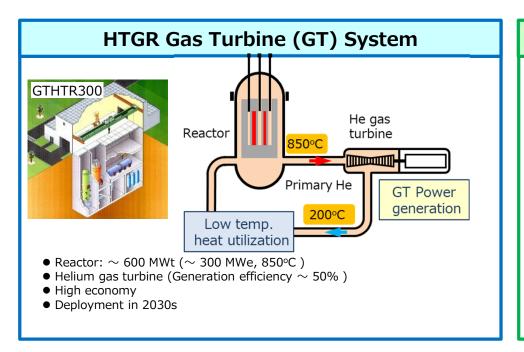
- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary

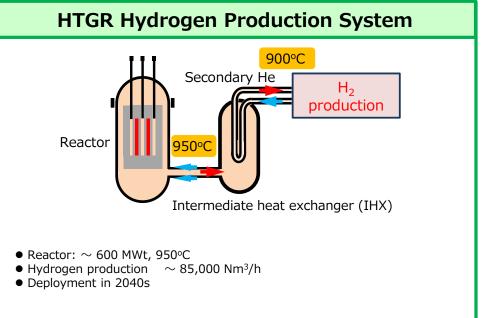

What is High Temperature Gas-cooled Reactor (HTGR)?

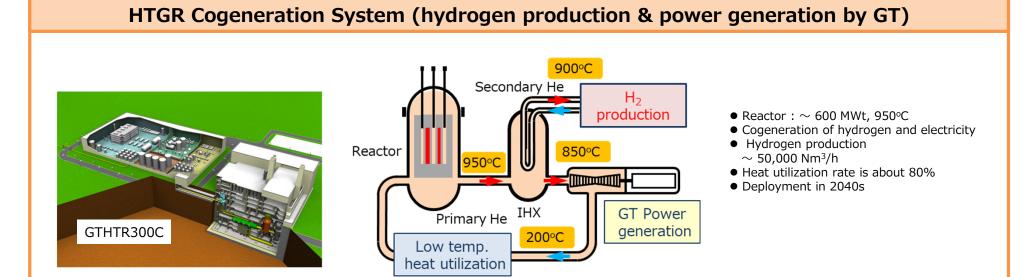

Superior inherent safety

- Accidents that cause release of a large amount of radioactive materials to environment do not occur.
- A nuclear accident similar to that in the Fukushima-Daiichi Nuclear Power Station does not happen.

A wide range of heat applications


- Helium gas cooled reactor with outlet coolant temperature as high as 950°C
- A wide range of heat applications, such as hydrogen production, electric power generation, desalination, etc.





HTGR Systems

Major Specification of HTGR Hydrogen System

		Hydrogen & Electricity cogeneration (demonstration reactor)	Hydrogen & Electricity cogeneration (commercial reactor) 1,2)	Hydrogen only HTGR system ³⁾
Thermal power of reactor	MW_t	50	600	600
Temperature of He gas output	۰C	950	950	950
Electricity generation efficiency Note 1),	%	40	47.0 / 38.0 Note2)	-
H ₂ production thermal efficiency (Iodine-sulfur process) Note 3)	%	47.3	49.4 / 46.6	50.0
Electric power (at-site)	MW _e Note 4)	14	202 / 87	0
	Nm³/h	2.66×10³	3.19×10 ⁴ / 6.95×10 ⁴	8.46×10 ⁴
H ₂ production volume ^{1,2)}	t/d	5.7	68.3 / 149.0	181.4
	t/y Note 4)	1.66×10 ³	1.99×10 ⁴ / 4.35×10 ⁴	5.30×10 ⁴
H ₂ pressure ²⁾	kPa	101.3	101.3	101.3
H ₂ purity ²⁾	mol%	98.8	98.8	98.8

Note 1) At-site value. (Thermoelectric conversion) = [(Electric power) / (Thermal power of reactor)] \times 100

Note 4) Assuming availability of 80%

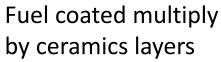
Note 2) In the power-hydrogen cogeneration, the turbine inlet temperature is lowered because the heat from the high-temperature part of the helium gas is used for hydrogen production. This reduces the thermoelectric conversion compared to that of power generation alone.

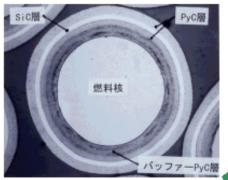
Note 3) [(HHV of H_2) / (required heat + heat to generate electricity)] \times 100 The difference in thermoelectric conversion results in a difference in hydrogen production efficiency.

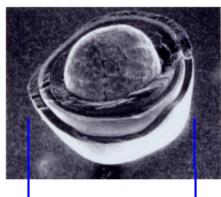
¹⁾ X. Yan et al., Nuclear Production of Hydrogen (3rd Information Exchange Meeting Oarai, Japan 5-7 October 2005) 121-139, OECD, 2006.

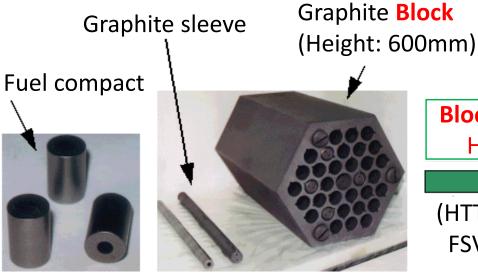
²⁾ Derived using "S. Kasahara et al., Nucl. Eng. Des., 329, 213-222, 2018."

³⁾ J. Iwatsuki et al., Economic Evaluation of HTGR IS Process Hydrogen Production System, JAEA-Review 2014-037.

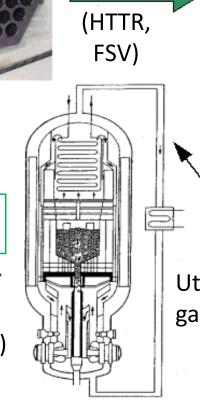



Contents


- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary


Block-type HTGR and Pebble-bed-type HTGR (1/2)

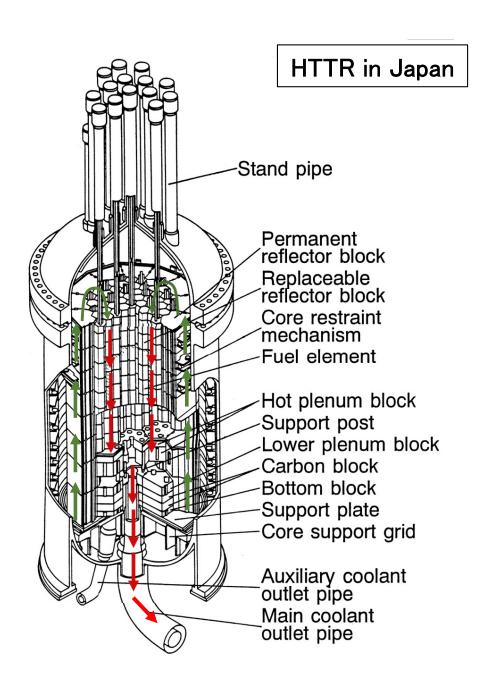
Approx. 1mm

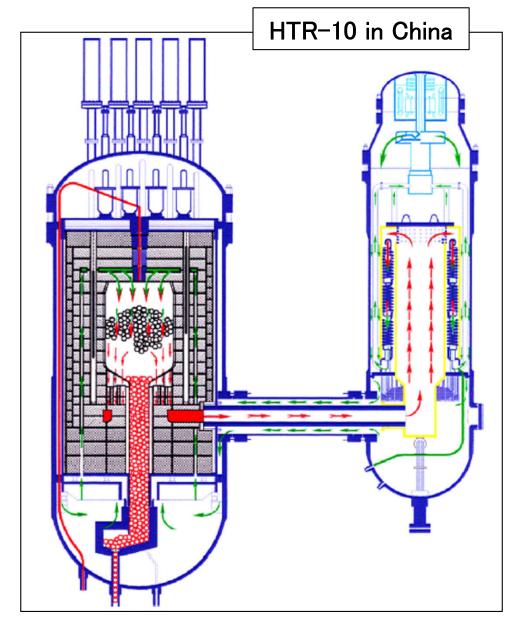

Utilization of graphite material for moderator and structural material

Fuel **Pebble** (Diameter:60mm)

Pebble-bedtype HTGR

(HTR-10, HTR-PM, AVR)


Block-type


HTGR

Utilization of helium gas as coolant

Block-type HTGR and Pebble-bed-type HTGR (2/2)

Block vs Pebble Bed

Items	Block type	Pebble bed type	Features of block type
Thermal power	~600 MW	~400 MW	Larger thermal power with lower fuel temperature at loss of force cooling
Fuel temperatureNormal operation	Higher	Lower	Lower effective coolant flow with lower core heat transfer by bypass flow
 Loss of forced cooling 	Lower	Higher	Higher overall heat transfer coefficient
Discharged U ²³⁵ in spent fuel	Higher	Lower	Discharged U ²³⁵ in spent fuel is higher since fuels cannot be exchanged during operation.
Graphite dust in primary coolant	Negligible small amount	3 kg/y in AVR	Negligible small amount without abrasion of graphite fuel in core and friction in piping
Economics	84%~88% of pebble bed type		Better economics due to size effect with larger maximum thermal power
Experiences of earthquakes	Many	Few	Excellent seismic design with many experiences of earthquakes such as HTTR

Contents

- 1. Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary

History and Plan of HTGR Development

Country	1960	1970	1980	1990	2000 20	010 20	20
Japan	Design, R&D construction operation	R&D(VHTRC, H	ENDEL, OGL-1)		or) 30MWt / 950°C	et	
Poland				-	ental reactor 30MWt		
UK	Dragon (e	xperimental read	20MWt / 75	D°C	Conceptual design of a	n Advanced Modular I	Reactor
Canada					Conceptual design of a	an Small Modular Rea	ctor First
China				HTR-PM (den	perimental reactor) nonstration reactor) commercial reactor) 2	250MWt × 2 units /	criticality in 2021 750°C
Korea	Peach I	Bottom (experime	ntal reactor) 40MW	-	onstration reactor) ~	200MWt / 950°C	
US			pe reactor) 330MW		NGNP (prototype r	eactor) ~ 600MWt /	750°C
Germany		perimental react 00 (prototype re		C × highest temperatu	in the core		10

HTGRs in the Past and in Operation

Power Reactors

Fort St. Vrain

Peach Bottom
1966 – 1974
USA

1976 – 1989 USA

1985 - 1989 **GERMANY**

THTR

DRAGON 1965 – 1975 UK

AVR 1968 - 1988 **GERMANY**

Research Reactors

HTTR 1998 – **JAPAN**

HTR-10 2000 -**CHINA**

POWER
MWt/MWe
He COOLANT
Pressure, MPa
Inlet/Outlet Temp, °C
POWER DENSITY
MW/m³
FUEL TYPE
FUEL ELEMENTS
REACTOR
VESSEL

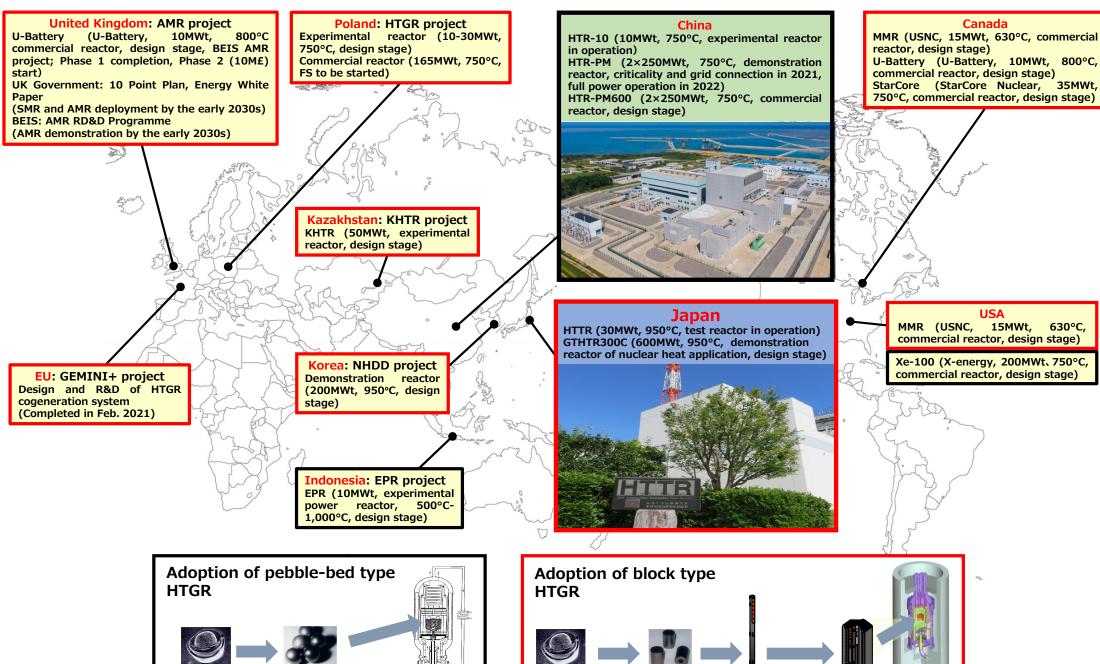
	115	842	750
√e	40	330	300
Pa	2.5	4.8	4
et °C	377 750	400 775	250 750
Y n³	8.3	6.3	6
	BISO Carbide	TRISO Carbide	BISO Oxide
S	COMPACTS CYLINDRICAL	COMPACTS HEXAGONAL	COMPACTS SPHERICAL
	STEEL	PRESTRESSED CONCRETE	PRESTRESSED CONCRETE

	_	-	-
20	46	30	10
-	15	-	-
2	1.1	4	3
350	270	395	250
750	950	850/950	700
14	2.3	2.5	2
TRISO	BISO	TRISO	TRISO
Carbide	Oxide	Oxide	Oxide
COMPACTS	COMPACTS	COMPACTS	COMPACTS
CYLINDRICAL	SPHERICAL	HEXAGONAL	SPHERICAL
STEEL	STEEL	STEEL	STEEL

BISO refers to a fuel coating system that uses two types of carbon coatings

TRISO refers to a fuel coating system that uses three types of coatings, two carbon coatings and one silicon carbide

China: Demonstration and Commercial HTGRs


HTR-PM Demonstration HTR-PM connected to grid, world nuclear news, Dec 21, 2021.

Project	HTR-PM (Demonstration reactor)	HTR-PM600 (Commercial reactor)
Major organization	Huaneng Shandong Ishijima Bay Nuclear Power (State-owned company)	China Nuclear Industry Construction Group (Stateowned company), etc.
Thermal/Electric power	250MWt × 2 / 210MWe	655 MWe by six HTR-PM reactor units
Reactor outlet temp.	750 °C	750 °C
Construction/ Operation start	2009/2021	After 2021/2024
Current situation	Construction	Pre-construction (Feasibility studies)
Note	First criticality on September 12, 2021 (1st reactor) First criticality on November 11, 2021 (2nd reactor) Connection to the grid on December 20, 2021	Sanmen, Zhejiang province; Rujin, Jiangxi province; Xiapu and Wan'an, Fujian province; and Bai'an, Guangdong province

HTGR Development in the World

Fuel compact

Fuel rod

Graphite block

Pebble type fuel element

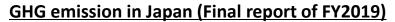
HTGR Development Background

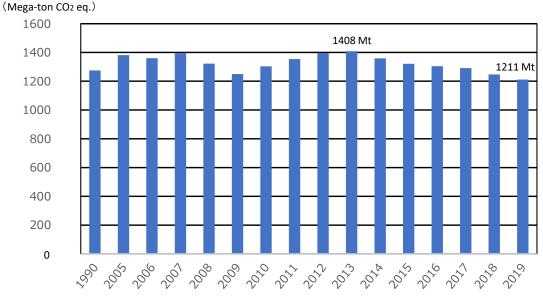
Why HTGR was developed?

- Several countries started to develop high temperature gas cooled reactor to make it higher temperature, power density and thermal efficiency as economically competitive nuclear power plants with Light Water Reactor after UK developed the first nuclear power station "Magnox" (graphite moderate CO₂ gas cooled reactor).
- US and German each developed a prototype HTGR which has steam generators and 40% of power generation efficiency by government-private sector joint research project.
- German and Japan each developed HTGR for high-temperature heat supply for coal gasification or reduced iron production aiming to less oil import.
- After Three Mile Island accident, small modular reactor (SMR) concepts were proposed which cannot cause meltdown accident and the helium gas turbine HTGR system was developed for further economical improvement.

Contents

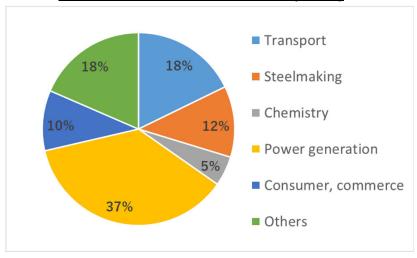
- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary




Role of HTGR for Carbon Neutrality in Japan

Green Growth Strategy Through Achieving Carbon Neutrality in 2050 (The Ministry of Economy, Trade and Industry (METI) formulated it on December 25, 2020, and issued a new version on June 18, 2021.)

Plan for global warming countermeasures (Leaders Summit on Climate, April 22, 2021)


Mid-term target: 46.0% reduction by FY2030 compared to FY2013

- The emission reduction in FY2019: 14.0% compared to FY2013
- To achieve the goal,
 - ✓ Reduction by additional 32% by 2030
 - ✓ Reduction by additional 86% by 2050

Breakdown of GHG emission (2019)

Role of HTGR

- HTGR can produce hydrogen for nuclear steel making and fuel cell vehicle.
- HTGR can produce steam for conventional industries.
- HTGR can absorb renewable power variation.

Deployment Effect of HTGR Hydrogen System

H₂ requirements, numbers of HTGRs, CO₂ reduction in 2050s

Sectors		H ₂ requirements (Mt/y)	Number of units, installed capacity	Contribution ratio of HTGR H ₂ supply (%)	HTGR H ₂ supply (Mt/y)	Number of HTGRs	CO ₂ reduction (Mt/y)		
H ₂ steelmaking		2.2	Shaft furnace 18 units ^{※2}	80 ¾4	1.8	34 ^{%5}	56.0 [*] 2		
	Car	1.8 **1	20 million units *3	30 ※4		0.5	0.5		4.2 **2
FCV	Truck	1.0 *1	3.4 million units **3		0.3	17 ^{※5}	7.0 *2		
	Bus	0.1 **1	0.1 million units *3		0.0		0.4 **2		
Stationary FC	At-home	1.8 1)	15.3 million units **3	30 ¾4	0.5	22 ^{%5}	4.7 ^{※2}		
,	Business	2.0 ¹⁾	17.8 GW ^{※3}		0.6		5.2 ^{**2}		
Total		9.0			3.8	73	77.6 (5.9%) ^{※6}		

 H_2 requirements for H_2 steelmaking (2.2 Mt/y)

= Total in Japan (85.7 Mt-steel/y) $^{2)}$ × Contribution ratio of H $_2$ steelmaking (40%) *4

 \times H2 requirement for H₂ steelmaking (0.065 kg-H₂/t-steel) \times 2

HTGR hydrogen production system has the potential to supply about 40% of H₂ needed for H₂ steelmaking, FCVs, and FCs

Y. Matsuo et al., Position and introduction prospects of hydrogen energy toward a low-carbon society in 2050, The Institute of Energy Economics, Japan, 2013.

²⁾ Steel statistical yearbook 2017, World Steel Association, 2018.

³⁾ Japan's National Greenhouse Gas Emissions (1990~2016), National Institute for Environmental Studies, Japan.

^{※1:} Estimated using ref. 1)

^{※2 :} Estimated value by JAEA

^{※3:} Value from ref. 1)

X4: Assumed by JAEA

^{★5:} Thermal power of reactor: 600MWt, H₂ production: 85,000 Nm³/h

^{★6:} Reduction ratio to 2013 CO₂ emission³⁾

Contents

- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary

The 6th Strategic Energy Plan (October 2021, Cabinet Decision)

5. Policy responses towards 2030 looking ahead to 2050

- (8) Drastic enhancement of efforts towards realizing the hydrogen society
- The government will support innovative hydrogen production technology development and basic research, such as hydrogen production using photocatalysts and high-temperature heat sources such as high-temperature gas-cooled reactors, for further reduction of hydrogen supply cost and efficient mass production of hydrogen.

AEA translation

(12) Global harmonization and global competition

- In advancing research and development of innovative technologies such as fast reactors, small modular reactors, and high-temperature gas-cooled reactors, the government will actively support the efforts of Japanese companies in collaboration with overseas demonstration projects such as the United States, the United Kingdom, France, and Canada, and expand the options to meet various social demands.
- 6. Promotion of strategic technology development, and its societal implementation and so on, integrated with industrial, competition and innovation policies for realization of carbon neutrality by 2050
- In Japan, the government will promote the development of new technologies that drastically improve the safety, reliability, and efficiency of nuclear use for the future and human resource development. The new technologies include high-temperature gas-cooled reactors, which are expected to be utilized in various industries including hydrogen production and which have an inherent safety and other reactors with excellent safety.
- By 2030, while making the most of the private sector's ideas and wisdom, development of fast reactor will be steadily promoted by utilizing international cooperation; small modular reactor technology will be demonstrated through international cooperation; and component technologies related to hydrogen production at high temperature gas-cooled reactor will be established.

 Provisional translation by METI

Green Growth Strategy Through Achieving Carbon Neutrality in 2050 (June 18, 2021)

4. "Action Plans" in key industrial fields (4) Nuclear industry 3) High-temperature gas-cooled reactor (HTGR) <Future efforts>

Utilizing the HTTR which recorded world's highest temperature, the government will support, in addition to international safety demonstration, necessary technology development for massive and low-cost carbon-free hydrogen production by 2030. Simultaneously, development of carbon-free hydrogen production method using ultra high temperature heat including IS process and methane pyrolysis method will be supported. In supporting the development, the government will participate in technology development and verification giving thoughts to safety, economy, supply chain construction, regulatory compliance and so on, and will compose overseas joint projects considering the status of preceding overseas projects.

Moreover, considering the situation where Japan is leading the world also in terms of establishment of standards through construction, operation and restart of the HTTR, cooperation with related organizations of other countries for diffusion of Japanese standards will be promoted.

			Developr	ment phase		Demor		duction and expansion / eduction phase
	2021	2022	2023	2024	2025	~2030	~2040	~2050
HTGR	of HTTR sai		HTTR	carbon-free	hydrogen pr	et required for roduction of world's highest	Demonstration of connective technologies between carbon-free hydrogen plant and HTGR	Cost reduction by sales expansion and mass production
		nt of carbon- heat (IS pro	•		~ .	utilizing high	Verification required for implementation	

Contents

- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary

Overview of the HTTR Project

(1) Reactor technology: HTTR

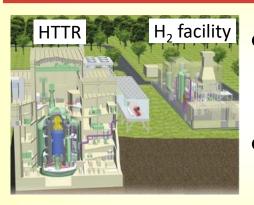
- 30 MWt and 950 °C prismatic core advanced test reactor (Operation started in 1998)
- Obtained permission of changes to reactor installation of the HTTR, restarted in July 2021.
- HTTR tests for HTGR safety demonstration.

(2) Gas turbine and H₂ technology

He compressor

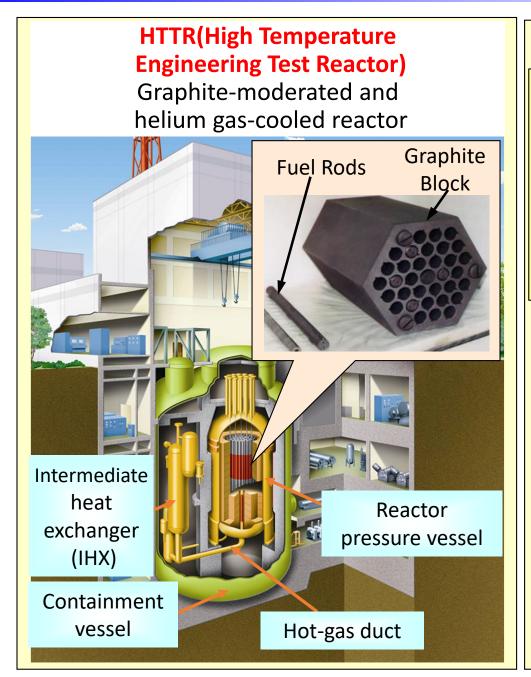
 R&D of gas turbine technologies such as high-efficiency helium compressor, shaft seal, and maintenance technology

Hydrogen facility


 In January 2019, 150 hours hydrogen production with rate of 30L/h was achieved.

(3) Innovative HTGR design

- Design study of commercial HTGR for electricity generation and H₂ production
- Establishment of commercial HGTR safety standards
- Design study of HTGR for steam supply


(4) HTTR-heat application test

- Licensing acquisition of world's first nuclear hydrogen production
- Demonstration test for safe & reliable HTGR heat application technologies

HTGR Development in JAEA: HTTR

Major specification

Thermal power 30 MW

Fuel Coated fuel particle /

Prismatic block type

Core material Graphite

Coolant Helium gas

Inlet temp. 395°C

Outlet temp. 850/950°C

Pressure 4 MPa

First criticality: 1998

Full power operation: 2001

50 days continuous 950°C operation: 2010 Loss of forced cooling test at 9MW: 2010

Safety review after the 1F accident

Restart after safety approval by NRA: July 2021

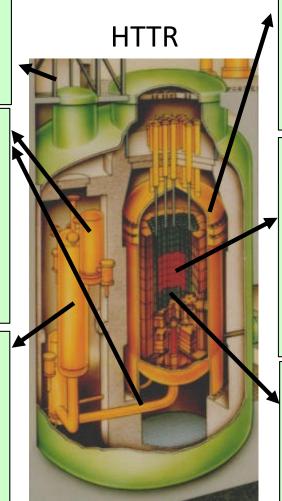
HTTR's Systems

HTTR's design, construction and operational experiments (MHI, Toshiba/IHI, Hitachi, Fuji Electric, KHI, etc.)

Design optimization based on extensive technical database

Primary coolant system (MHI)

Construction of efficient transport and cooling system for very high temperature heat (950°C)

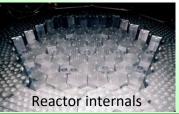

Concentric hot gas duct

Primary pressurized water cooler

He/He intermediate heat exchanger (IHX) (Toshiba/IHI)

Developed new heat (950°C) and corrosion resistance material Hastelloy XR

Reactor pressure vessel (Hitachi)

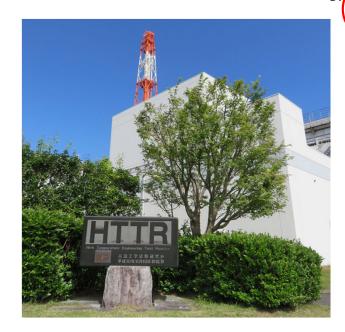

Developed high temperature structural design guideline for 2 1/4Cr-1Mo steel

Fuel (Nuclear Fuel Industries)

Advanced coating technology

- Reactor internals (Fuji Electric)
- Graphite material IG-110 (Toyo Tanso)

High strength Irradiation -resistance


History of HTTR

High Temperature Engineering Test Reactor **HTTR**

Purpose

■ Establishment of HTGR technology

■ Establishment of Heat utilization technology

Restart 2021 Approval of restart by 2020 NRA (June 3rd) Safety review on the New 2014 Regulatory Requirements toward resumption of operation Start of Loss of First in

Forced Cooling test 2010

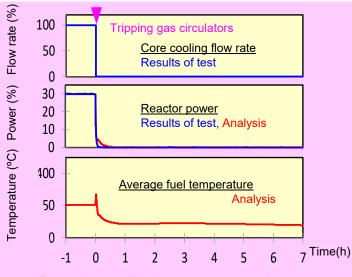
950°C/50 days operation

850°C/30 days operation Reactor outlet coolant 2004 temperature 950°C Safety demonstration test 2002 (Control rod withdrawal test)

Reactor outlet coolant 2001 temperature 850°C (30MWt) 1998 First criticality

1997 Construction 1991 1990

Application and permission of construction 1989 1988


2007

the world

Detail design 1985

HTTR 1984 Basic design 1981 1980 System integrity design 1974 1973 Conceptual design 1969

JAEA has restarted the **HTTR without significant** reinforcement.

Reactor is naturally shut down as soon as the core cooling flow rate is reduced to zero.

Reactor is kept stable long after the loss of core cooling.

Research and Development

Fuels • Materials

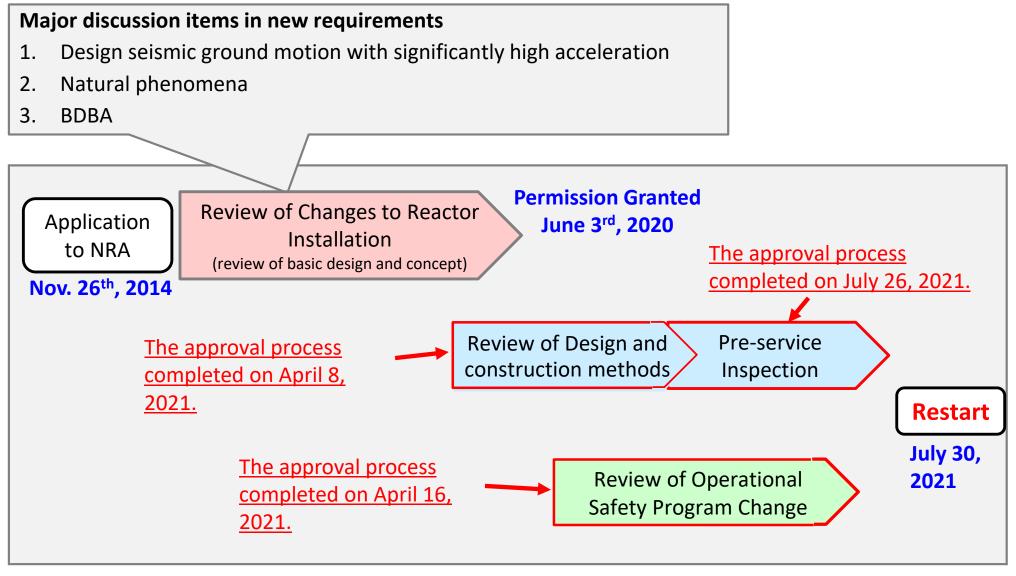
In-pile Helium loop (OGL-1)

HTRC

Reactor Physics

Very High Temperature Reactor Critical Assembly (VHTRC)

Thermal Hydraulics



Helium Engineering **Demonstration Loop** (HENDEL)

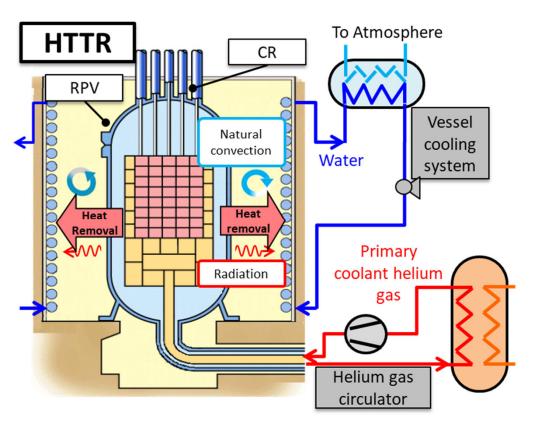
Schedule towards Restart of HTTR

New regulatory requirement issued on 18 December, 2013

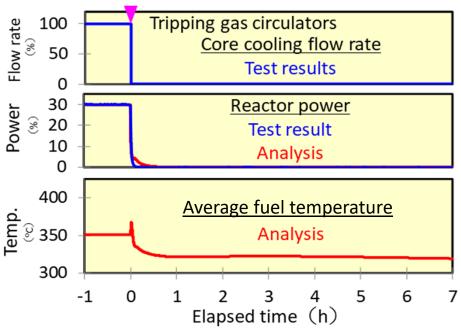
The flow of review and inspection for checking conformity to New Regulatory Requirements

Results of Safety Review by Nuclear Regulation Authority

Major discussion item		Regulatory review condition	Regulatory review results	Additional countermeasures
Design seismic ground motion Earthquake Re-evaluation of seismic design classification		Raised from 350gal to 973gal		
		Some of safety systems, structures and components (SSCs) were classified from S to B based on results of safety demonstration tests. Core heat removal: S class to B class Reactor internal structure: S class to B class.	No large-scale reinforcement due to the degradation of the SSCs.	Not required
Tsunami evaluation		Assumption of tsunami height for evaluation: 17.8m from sea level	Tsunami does not reach the site because siting location is 36.5 meters high from the sea level.	Not required
Evaluation of integrity of SSCs against natural phenomena such as tornado, volcano, etc.		 Design basis tornado wind speed: 100 m/s Thickness of descent pyroclastic material by volcano: 50 cm 	installed inside the reactor building	
Fire		Burnable materials in and around the reactor building was additionally evaluated.	 Amount of burnable materials in the reactor building is limited. Cables necessary to be protected against fire 	Cable protection against fire was required.
Reliability of power supply		Emergency power supply failure was evaluated.	Decay heat is removable from the core without electricity.	Only portable
Beyond design basis accident (BDBA)		Postulated BDBAs DBA + failure of reactor scram DBA + failure of heat removal from the core DBA + failure of containment vessel Intentional aircraft crash	 No core melt occurs in all BDBAs. Intentional aircraft crash does not damage SSCs in the reactor building. 	power generator for monitoring during accident is required.


Obtained permission for changes to Reactor Installation of the HTTR by NRA on June 3rd, 2020 HTTR has restarted without significant additional reinforcements due to its inherent safety features.

Further Safety Demonstration Test


Safety demonstration test under OECD/NEA project

- 30% power(9MW) <u>Loss of forced cooling test</u> (All HGC tripped) Finished (2010)
- 100% power <u>Loss of forced cooling test</u> (All HGC tripped) Planned
- 30% power <u>Loss of core cooling test</u>
 (All HGC + VCS tripped) <u>Finished (Jan 2022)</u>

Test Result

The reactor is naturally shut down as soon as the core cooling flow rate to zero. The reactor is kept stable long after the loss of core cooling

Future test plan

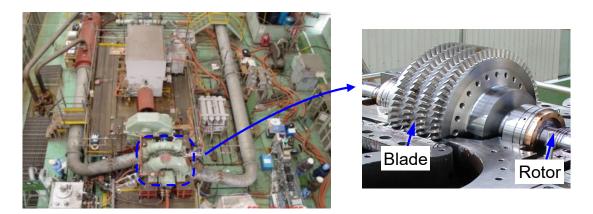
- □ Core physics: Xenon stability, decay heat measurement, burnup characteristic, etc.
- **Fuel:** Iodine plate-out, integrity after long time operation, tritium behavior, etc.
- □ Components: IHX performance, etc.
- HTTR heat application test

Contents

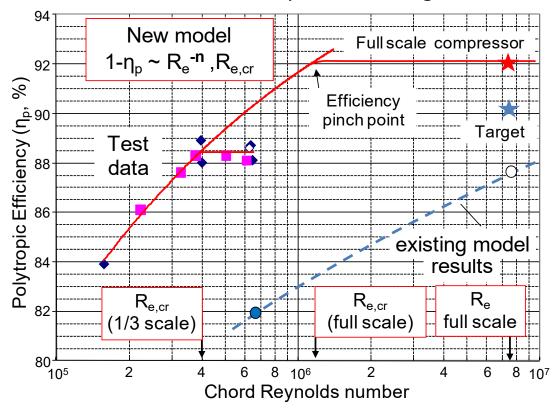
- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary

Helium Gas Turbine R&D

R&D Items


- Compressor technology
- Shaft seal technology
- Maintenance technology

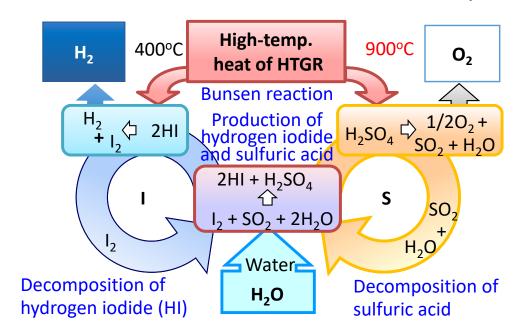
Compressor Technology Elements


- High performance compressor flowpath
- Tight blade tip clearance
- 3D blade airfoil

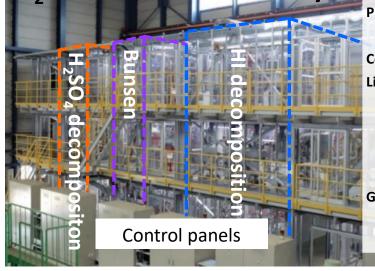
Results

- World's first successful axial-flow helium compressor was demonstrated by 1/3 scale test rig
- Validated helium compressor design method with test data
- Efficiency significantly improved over existing air-compressorexperience based model

1/3 Scale Compressor Test Rig



Correlation of He Compressor Efficiency with Re



HTGR Development in JAEA -H₂ Production Technology-

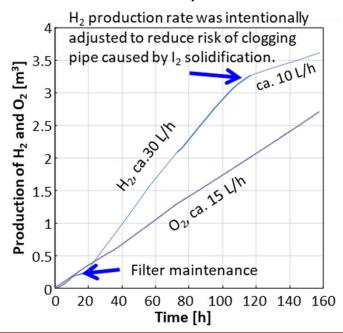
Thermo-chemical water splitting Iodine-Sulfur (IS) Process

H₂ Production Test Facility

Process

Electric heating

Component materials Liquid phase

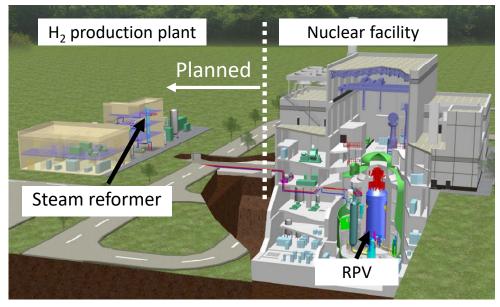

- Fluoroplastic lining
- Glass lining
- Silicon carbide (SiC)
- Graphite (impervious)

Gaseous phase

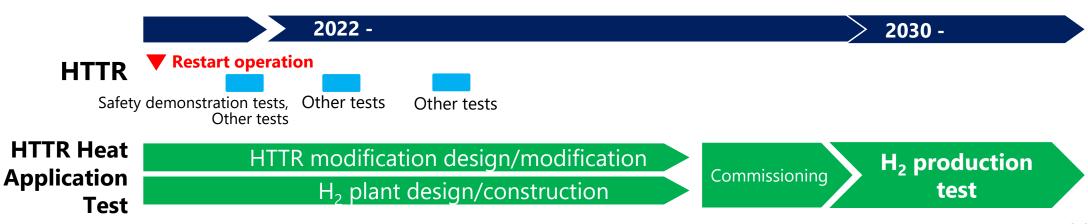
- Hastelloy C-276
- JIS SUS316

Test result

The 150-hour and 30 L/h continuous H₂ production was performed with integration of 3 sections in January 2019.

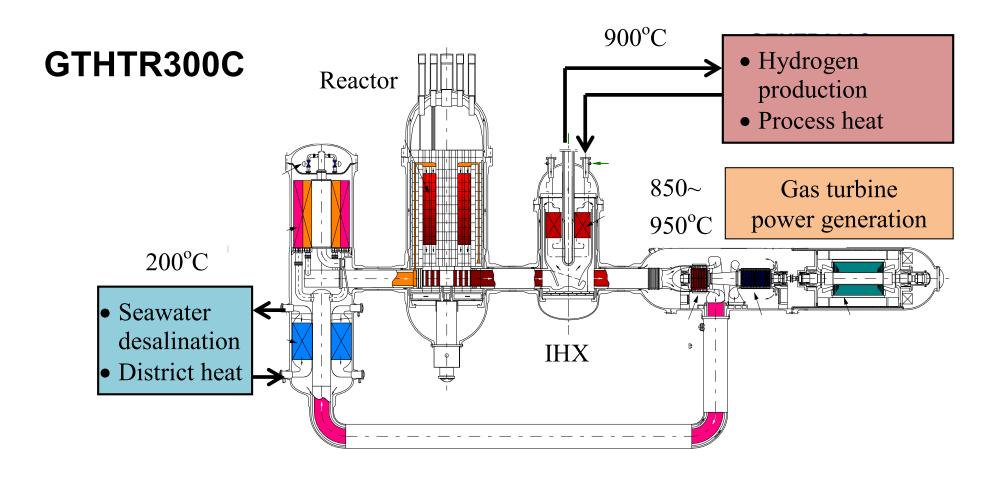

Future tests

- 100 L/h operation, longer operation.
- Development of automatic control system, high performance membrane, etc.
- Data acquisition on reliability, durability, etc.

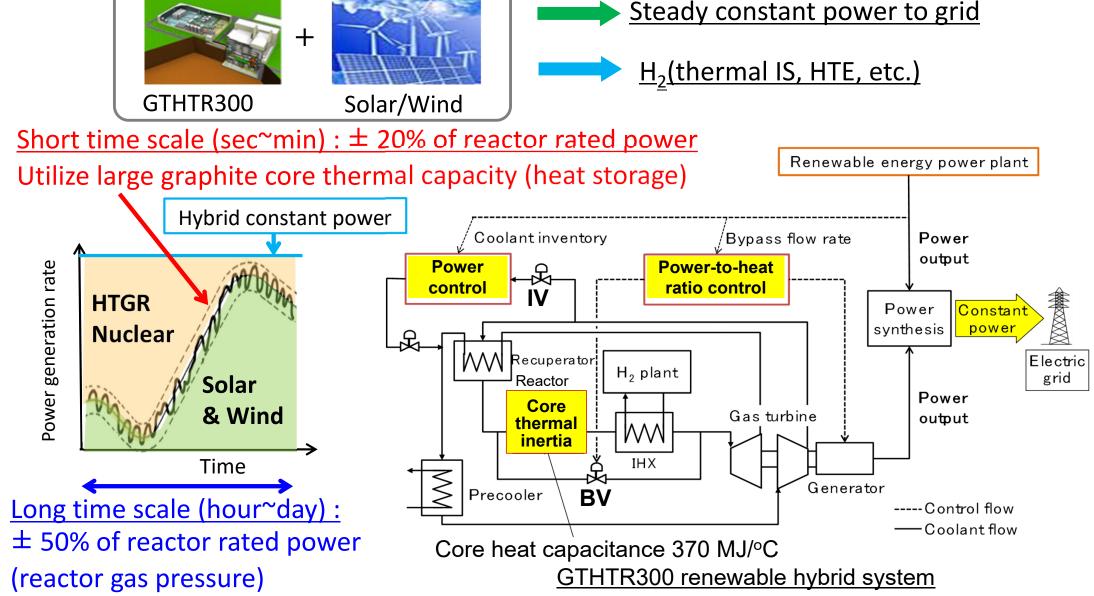

HTTR Heat Application Test

- Establish safety design for coupling of H₂ plant to HTGR
 - ✓ Obtain permission from regulatory authority for application of industrial standards to H₂ plant towards non-electric application of nuclear heat.
 - ✓ Complete development of coupling technologies for HTGR and H₂ production plant by 2030.
 - ✓ Develop carbon-free H₂ production technology such as IS process, etc., in parallel.

HTTR heat application test


Test schedule (Tentative)

GTHTR300C: HTGR Hybrid Energy System


- HTGR system for power generation and cogeneration of hydrogen, desalination, steelmaking, etc.
- Designed by JAEA in collaboration with Mitsubishi Heavy Industries, Fuji Electric, Kawasaki Heavy Industries, Nuclear Fuel Industries, Toshiba, IHI, others.
- Development status: Pre-licensing basic design completed.

Operational Flexibility - Renewable Hybrid (1/3) -

HTGR + renewable hybrid power for grid stability & cogeneration

Operational Flexibility - Renewable Hybrid (2/3) -

HX bypass flow [kg/s]

200

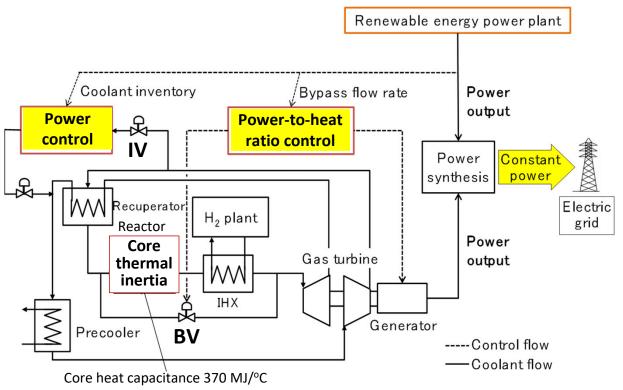
100

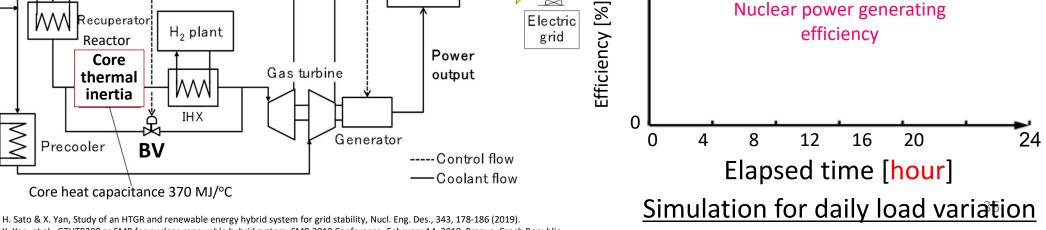
Normalized value

46

Inventory valve (IV) control

Power output


Bypass valve (BV) control


Reactor thermal power

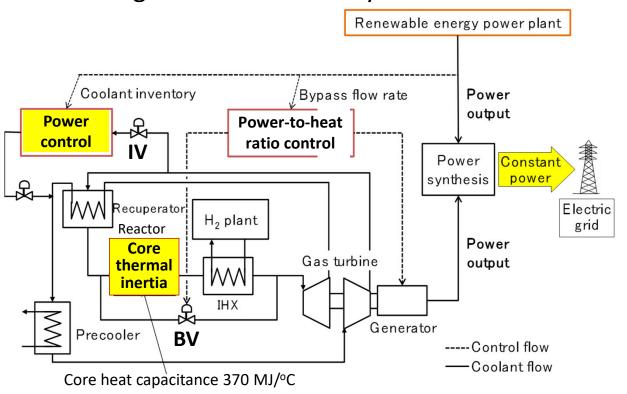
Nuclear power generating

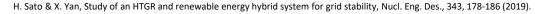
efficiency

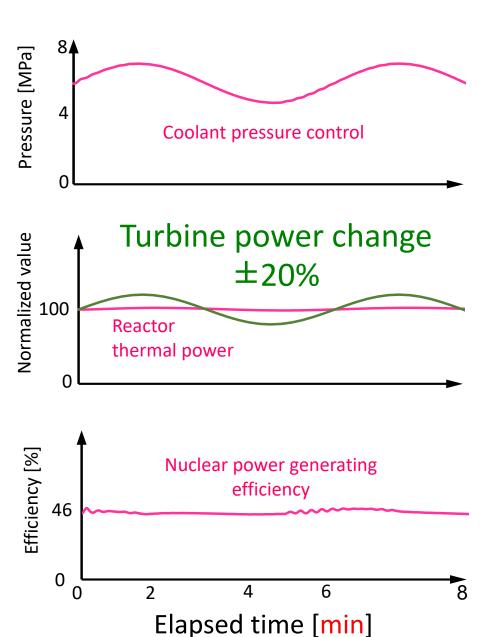
- Reactor responds to variable renewable (solar/wind) power generation at long time scale (on the order of hour ~ day)
 - Adjusting power/H2 production ratio
 - Reactor thermal power not changed
- Power generation efficiency is constant.

X. Yan, et al., GTHTR300 as SMR for nuclear-renewable hybrid system, SMR 2019 Conference, February 14, 2019, Prague, Czech Republic.

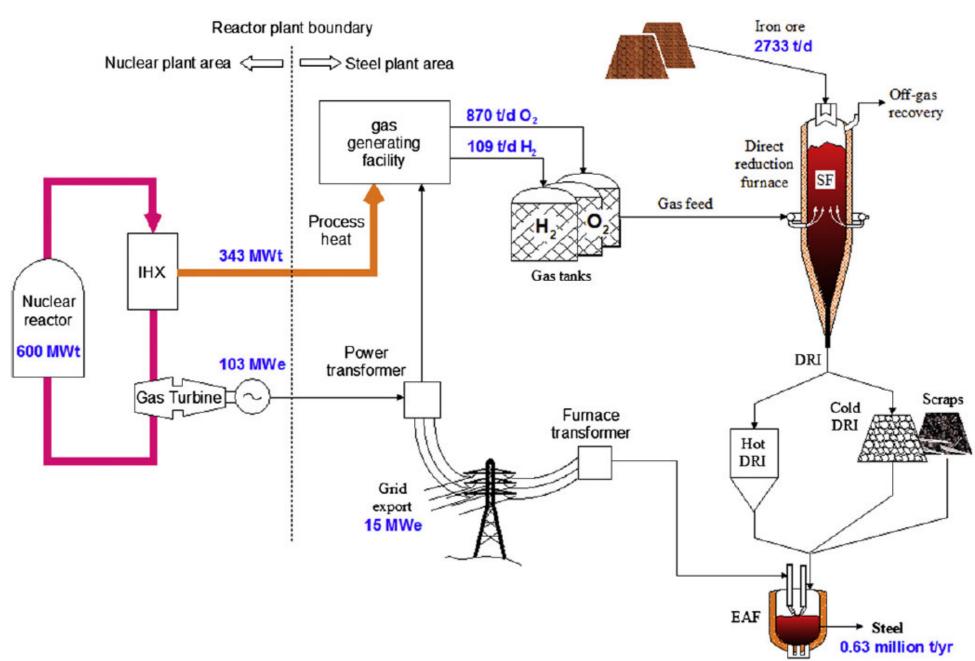
Soolant pressure


HX heat to

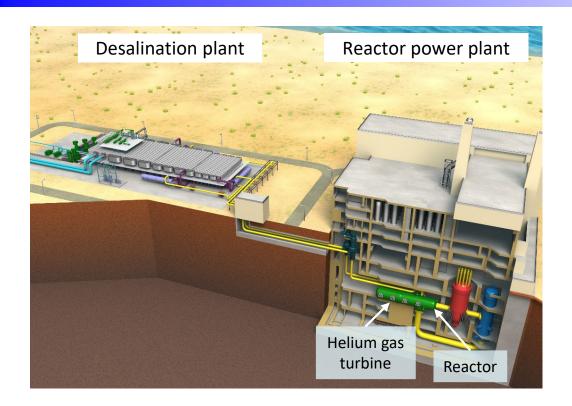

H2 plant


Operational Flexibility - Renewable Hybrid (3/3) -

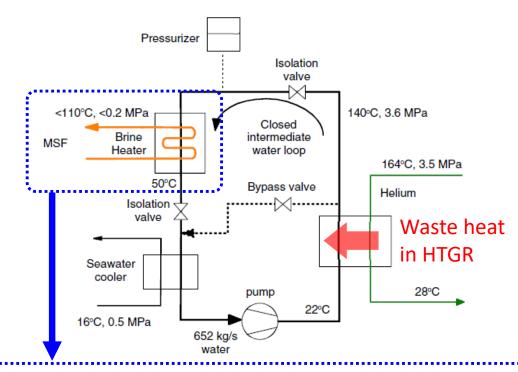
- Reactor responds to renewable (wind/solar)
 power generation fluctuation at short time scale
 (on the order of sec ~ min).
 - Utilize core thermal inertia
 - > Control coolant pressure
 - Reactor thermal (fission) power is not adjusted
- Power generation efficiency is constant.

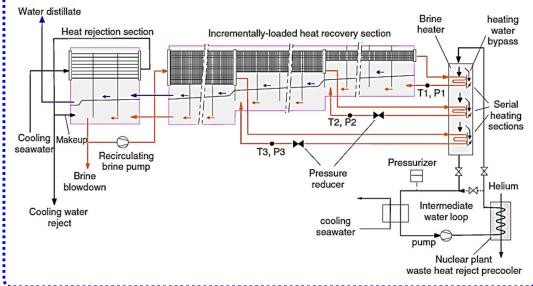

X. Yan, et al., GTHTR300 as SMR for nuclear-renewable hybrid system, SMR 2019 Conference, February 14, 2019, Prague, Czech Republic.

Simulation for load fluctuation



Product Flexibility - Nuclear Steelmaking -



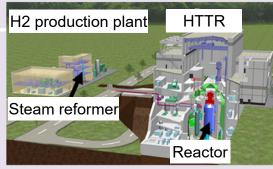


Product Flexibility - Seawater Desalination -

Reactor power [MWt]	600
Heat supply rate [MW]	248
Reactor outlet temp. [°C]	850-950
Power generation [MWe]	Up to 300
Portable water production [m³/d]	56,000

Contents

- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary

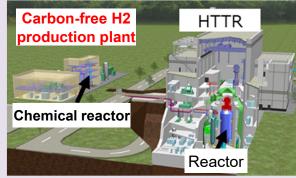

Technology Readiness Level of HTGR system

Development and Deployment Plan of HTGR (JAEA's draft plan)

2020 ~2030 ~2040 ~2050

HTTR-heat application system (SR)

- Establishment of safety design for HTGR-H2 production system
- Establishment of connection technology between HTGR and H2 production plant


Technology development plant

Verify reliability of all plant components and stability of long-term operation (made of metal and ceramics, 0.1 m³/h-H2)

Overseas demonstration reactor (power generation and heat application) under international collaboration

Connection of carbon-free H2 production plant (Demonstration of technologies necessary for practical use)

HTTR-heat application test with carbonfree H2 production (100-1000m³/h)

Reflect results of technology development Implement components of commercial plant

- Confirmation of carbon-free H2 production
- Confirmation of overall performance in HTGR system

Technology transfer of individual elements

Domestic demonstration reactor (power generation and H2 production)

Domestic commercial reactor

Expand to various heat sources that can utilize high-temperature heat

Establishment of supply chain Improvement of economic efficiency **Divergence of location**

Technology transfer to private sector

Solar power H2 production system $100 \sim m^3/h$

H2 production plant

Industrial waste heat utilization (mining, etc.) **H2 production system** $1000 \sim m^3/h$

Regu-lator

- Review of HTTR heat application system (SR: H2 production by steam reforming of natural gas)
 - Review of HTTR heat application system (Only carbon free H2 specific part)
- Review of
 - Review of demonstration reactor commercial reactor

Private sector

JAEA

Contents

- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary

JAEA International Cooperation on HTGR

Multilateral cooperation

Joint Test by HTTR. LOFC Project (Contracted Research)

- Loss of forced cooling test (Completed)
 - All three primary helium gas circulators were tripped at the initial reactor power of 30%
- Loss of core cooling test (planned)
 - All three primary helium gas circulators are tripped at the initial reactor power of 100%
 - Vessel cooling system is simultaneous tripped at reactor power of 30%

IAEA

- Technical Working Group on Gas Cooled Reactors (TWG-GCR) (Number of countries: 17)
- Technical Working Group on Small and Medium Sized or Modular Reactors (TWG-SMR) (Number of countries: 21)
- Coordinated Research Project (CRP)
 - ✓ Assessing Technical and Economic Aspects of Nuclear Hydrogen Production for Near-term Deployment
 - ✓ Development of Approaches, Methodologies and Criteria for Determining the Technical Basis for EPZ for SMR Deployment
 - ✓ Economic Appraisal of SMR Projects: Methodologies and **Applications**

Poland

• Information exchange and technology cooperation on HTGR based on memorandum of cooperation (2017.5-) and implementing arrangement (2019.8-) (National Centre for Nuclear Research: NCBJ)

United Kingdom

Bilateral cooperation

- Cooperation to U-Battery project (Commercial HTGR system) (URENCO, etc.)
- Cooperation on HTGR technology (National Nuclear Laboratory: NNL)
- Information exchange on HTGR safety (Office for Nuclear Regulation: ONR)

- The only test and research reactor of HTGR in the world to supply heat of 950°C
- **International joint** researches for needs of each country

Civil Nuclear R&D Working Group (CNWG)

• Development of simulation algorithm, validation of analytical model, study of connecting test between HTTR and heat utilization system

(Department of Energy: DOE, Idaho National Laboratory: INL)

- Public Information exchange (Tsinghua University, Institute of Nuclear and New Energy Technology: INET)
- **Korea**

Safety research (Nuclear Technology Safety Center: NTSC)

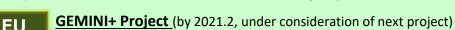
 Public Information exchange (Korea Atomic Energy Institute: KAERI)

Generation IV International Forum (GIF)

Very High Temperature Reactor (VHTR)

- Hydrogen Production System Project
- Fuel and Fuel Cycle Project
- **Material Project**
- Computational Methods Validation and Benchmarking Project

VHTR


Kazakhstan

(Institute of Nuclear Physics: INP)

 Public Information exchange (Badan Tenaga Nuklir Nasional: BATAN)

Design collaboration for Kazakhstan HTGR: KHTR (National Nuclear Center: NNC)

• ISTC project on irradiation research of oxidation-resistant SiC fuel compact

• Design and R&D of HTGR with heat application

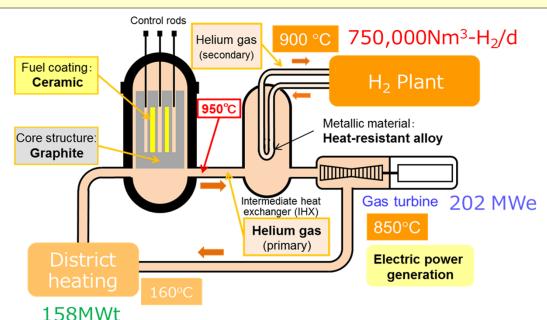
Contents

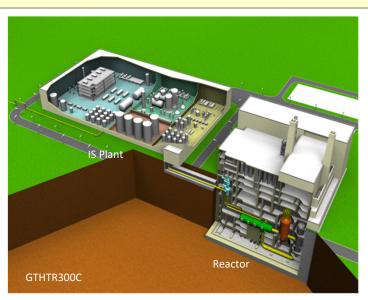
- Features of High-Temperature Gas-cooled Reactor (HTGR)
- 2. Block type and pebble bed type HTGRs
- 3. History and development status of HTGRs in the world
- 4. Current status of research and development of JAEA
 - 1 National policy
 - 2 HTGR technology
 - 3 Heat utilization technology
 - 4 Future plan
 - (5) International cooperation
- 5. Summary

Summary

- Government of Japan formulated "Green Growth Strategy Through Achieving Carbon Neutrality in 2050" positioning that HTGR as one of priority field that can contribute to achievement of goal realizing a carbon-neutral, decarbonized society by 2050.
- The HTTR restarted its operation on July 30, 2021. Loss of core cooling test was carried out as a safety demonstration test in January 2022.
- The HTTR heat application test project will be officially started in 2022 aiming to establish safety design for coupling H₂ plant to HTGR by 2030.
- GTHTR300C has operational flexibility: responding to variable renewable (solar/wind) power generation, and contributing to nuclear steelmaking and seawater desalination.

Thank you for your attention!





HTGR Hydrogen Cogeneration System for Steel-making

- Nuclear steel making using hydrogen as reducing agent produced by HTGR
- Reduction of 100% of CO₂ emitted from steel making factory
- First step: hydrogen by steam reforming, Future step: hydrogen by IS process

H₂ cost reduction by multi-purpose heat utilization systems.

Item	Cost reduction (USC/Nm³)	H ₂ production cost (USC/Nm³)
H ₂ production only	-	24.2
Cogeneration: H ₂ and electricity	12.4*	11.8
Waste heat utilization: District heating**	11.7	0.1

^{*} Changing the share of depreciation cost of HTGR construction (by H₂ production and power generation) and selling cogenerated electricity at 8.0 JPY/kWh, whereas the original power generation cost is 5.8 JPY/kWh.,** Market production cost: 0.65 JPY/MJ